China Ship Scientific Research Center;Taihu Laboratory of Deep-Sea Technological Science;State Key Laboratory of Deep-Sea Manned Vehicles;
[Purpose] In order to improve the energy utilization efficiency of the carbon dioxide absorption device, [Method] a digital model of the carbon dioxide absorption device and standard test bench of the deep-sea manned platform are established. A control strategy for the carbon dioxide absorption device of the deep-sea manned platform is proposed, taking into account both the volume fraction of carbon dioxide and the power of the device. The effects of a constant air volume strategy, a stage control strategy, and an intermittent control strategy on the carbon dioxide volume fraction and the device power under standard test bench conditions are analyzed. [Result] The results indicate that constant air volume control and stage control can achieve quantitative control of the carbon dioxide volume fraction.Under the same control requirements, the total power consumption of constant air volume control is lower than that of stage control; Stage control and intermittent control can achieve interval control of carbon dioxide volume fraction. For the same control requirements, the total power consumption of intermittent control is lower than that of stage control; for constant air volume control, the lower the target volume fraction, the greater the air volume demand, and the higher the power consumption. For intermittent control, selecting the minimum air volume that meets the requirements can reduce the power consumption and fan opening and closing frequency, and improve the device reliability; By changing the stage control strategy, the air volume level and volume fraction limit can be adjusted to achieve quantitative volume fraction control or interval control, respectively; For quantitative control of volume fraction, the smaller the control volume fraction, the shorter the running time; For volume fraction interval control, the larger the air volume, the shorter the running time. [Conclusion] The research results can provide some references for the control strategy of carbon dioxide absorption devices on deep-sea manned platforms.
10 | 0 | 4 |
Downloads | Citas | Reads |
[1]国防科学技术工业委员会.常规动力潜艇舱室空气组分容许浓度:GJB11.3—91[S]. 1991.Commission on Science, Technology, and Industry for National Defense. Permissible Concentration of Atmosphere Composition Aboard Diesel Submarine Compartments:GJB11.3—91[S].1991.
[2]姜磊,王瑶,高成君,等.载人潜水器供氧与二氧化碳吸收技术不同标准的比较分析[J].中国造船, 2020,61(1):177-186.JIANG L, WANG Y, GAO C J, et al. Comparison of Different Standards for Oxygen Supply and Carbon Dioxide Adsorption in Manned Submersible[J].Shipbuilding of China, 2020, 61(1):177-186.
[3]姜磊,赵俊海.载人深潜器二氧化碳清除方式研究[J].中国造船, 2010, 51(3):169-177.JIANG L, ZHAO J H. Research on Absorption Methods of Carbon Dioxide Applied in Human Occupied Vehicle[J].Shipbuilding of China, 2010, 51(3):169-177.
[4]姜世楠,马丽娥,王雅娟,等.潜艇舱室CO2净化技术的研究现状与展望[J].舰船科学技术, 2010, 32(12):3-6.JIANG S N, MA L E, WANG Y J, et al. Present State and Perspectives of Research on Carbon Dioxide Purification Technology for Submarine's Cabin[J]. Ship Science and Technology, 2010, 32(12):3-6.
[5]王兴超,国德旺,王雅娟,等.国外海军事故潜艇中二氧化碳清除技术[J].舰船防化, 2014(3):8-12.WANG X C, GUO D W, WANG Y J, et al. Carbon Dioxide Scrubbing Technologies for Use in DISSUB Abroad[J]. Chemical Defence on Ships, 2014(3):8-12.
[6]王雅娟,马丽娥,国德旺,等. K2O药板使用条件下LiOH罐的二氧化碳吸收性能研究[J].舰船防化,2012(4):16-19.WANG Y J, MA L E, GUO D W, et al. Performance of LiOH Canister on Carbon Dioxide Absorption Under Conditions Suitable for K2O[J]. Chemical Defence on Ships, 2012(4):16-19.
[7]黄华尧,闰月明,吴书鹏,等. LiOH清除CO2对密闭空间大气环境的影响[J].舰船防化, 2016(2):13-16.HUANG H Y, RUN Y M, WU S P, et al. Effects of Lithium Hydroxide Absorbing Carbon Dioxide on Atmospheric Environment in Enclosed Space[J].Chemical Defence on Ships, 2016(2):13-16.
[8]杨国威,卞强,于青霓,等.密闭空间温湿度条件对Li OH吸收效率的影响[J].载人航天, 2012, 18(5):14-18.YANG G W, BIAN Q, YU Q N, et al. Influence of Temperature and Humidity on Absorption Efficiency of LiOH in Confined Space[J]. Mabbed Spaceflight, 2012,18(5):14-18.
[9]赵卓,傅平丰. LiOH·H2O水合结晶与CO2的反应动力学[J].航天医学与医学工程, 2007(5):344-348.ZHAO Z, FU P F. Kinetics of Reaction Between LiON·H2O and CO2[J]. Space Medicine&Medical Engineering, 2007(5):344-348.
[10]周渝松,崔兵彦,牛同锋,等.多孔LiOH的吸收性能研究[J].当代化工, 2018, 47(6):1155-1157.ZHOU Y S, CUI B Y, NIU T F, et al. Study on the Absorption Performance of Porous Li OH[J]. Contemporary Chemical Industry, 2018, 47(6):1155-1157.
[11] DNV. Naval Rescue Submarines[S]. 2016.
[12]中国人民解放军总装备部. 65型-钾空气再生药板:GJB 984—90[S]. 1990.The General Reserve Department of PLA. Type-65Potassium Air Regenerating Agent:GJB 984—90[S]. 1990.
[13]王海宁,祝志华,徐蒙,等.深海载人平台二氧化碳清除技术发展现状及趋势[J].舰船科学技术, 2023,45(7):1-5.WANG H N, ZHU Z H, XU M, et al. Present State and Perspectives of Research on CO2 Removal Technology for Deep Sea Manned Platform[J]. Ship Science and Technology, 2023, 45(7):1-5.
Basic Information:
DOI:10.13788/j.cnki.cbgc.2025.04.03
China Classification Code:U674.941
Citation Information:
[1]郭杨阳,夏彬,周鑫涛等.深海载人平台二氧化碳吸收装置控制策略仿真分析[J].船舶工程,2025,47(04):22-29.DOI:10.13788/j.cnki.cbgc.2025.04.03.
Fund Information: