College of Civil Engineering and Architecture, Zhejiang University;Key Laboratory of Offshore Geotechnical and Material Engineering of Zhejiang Province;Power China Huadong Engineering Limited Corporation;Norwegian Geotechnical Institute;
In recent years, the construction cost of floating wind farms is reduced because of the concept of shared mooring design with shared anchor points or shared mooring lines and makes it possible to build large-scale floating wind turbine. The research status and challenges of shared mooring floating wind farms are reviewed, including the dynamic analysis method of shared mooring floating wind farms, the bearing characteristics of the mooring foundation of shared mooring system and other key issues. The layout form,reliability optimization method and numerical simulation method of floating wind farm conceptual design are summarized, and the characteristics of shared mooring load transfer and the key points of mooring foundation design are pointed out. References can be provided by the relevant conclusions for the application of shared mooring for offshore floating wind farms in China and abroad.
1,037 | 4 | 14 |
Downloads | Citas | Reads |
[1]刘志杰,刘晓宇,孙德平,等.海上风电安装技术及装备发展现状分析[J].船舶工程,2015,37(7):1-4.LIU Z J,LIU X Y,SUN D P,et al.Analysis of Offshore Wind Installation Technology and Equipment Development Situation[J].Ship Engineering,2015,37(7):1-4.(in Chinese)
[2]GWEC.Global Wind Report 2018[R].2019.
[3]IEA.Offshore Wind Outlook 2019[R].2020.
[4]DNV.Floating Wind:the Power to Commercialize[R].2020.
[5]BORG M,JENSEN M W,URQUHART S,et al.Technical Definition of the Tetra Spar Demonstrator Floating Wind Turbine Foundation[J].Energies,2020,13(18):1-11.
[6]European Union.Pivotbuoy:an Advanced System for Cost-Effective and Reliable Mooring,Connection,Installation&Operation of Floating Wind[R].2020.
[7]STEHLY T,BEITER P,DUFFY P.2019 Cost of Wind Energy Review[R].2020.
[8]GAO Z Y,MOAN T.Mooring System Analysis of Multiple Wave Energy Converters in a Farm Configuration[C]//8th European Wave and Tidal Energy Conference.2009.
[9]FONTANA C M,DEGROOT D J,LANDON M,et al.Efficient Multiline Anchor Systems for Floating Offshore Wind Turbines[C]//35th International Conference on Ocean,Offshore and Arctic Engineering.2016.
[10]FONTANA C M,HALLOWELL S T,ARWADE S R,et al.Multiline Anchor Force Dynamics in Floating Offshore Wind Turbines[J].Wind Energy,2018,21(11):1177-1190.
[11]GOLDSCHMIDT M,MUSKULUS M.Coupled Mooring Systems for Floating Wind Farms[C]//12th Deep Sea Offshore Wind R&D Conference.2015.
[12]G?ZCüO,KONTOS S,BREDMOSE H.Dynamics of Two Floating Wind Turbines with Shared Anchor and Mooring Lines[J].Journal of Physics:Conference Series,2022,2265(4):042026.
[13]CONNOLLY P,HALL M.Comparison of Pilot-Scale Floating Offshore Wind Farms with Shared Moorings[J].Ocean Engineering,2019,171:172-180.
[14]WILSON S,HALL M,HOUSNER S,et al.Linearized Modeling and Optimization of Shared Mooring Systems[J].Ocean Engineering,2021,241:110009.
[15]DEVIN M C,DUPONT B L,HALLOWELL S T,et al.Optimizing the Cost and Reliability of Shared Anchors in an Array of Floating Offshore Wind Turbines[J].ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,Part B.Mechanical Engineering,2021,7(4):040905.
[16]YAMAMOTO S,COLBURN W E.Power Generation Assemblies,and Apparatus for Use Therewith:Power Generation Assemblies,and Apparatus for Use Therewith:US 10904040[P].2004-10-20.
[17]JAMES R,ROS M C.Floating Offshore Wind:Market and Technology Review[R].2015.
[18]JONKMAN B J,BUHL M L.Turb Sim User′s Guide[K].USA:National Renewable Energy Laboratory,2006.
[19]JONKMAN J M,BUHL M L.FAST User's Guide[K].USA:National Renewable Energy Laboratory,2005.
[20]ROBERTSON A,JONKMAN J,VORPAHL F,et al.Offshore Code Comparison Collaboration Continuation within IEA Wind Task 30:Phase II Results Regarding a Floating Semisubmersible Wind System[R].USA:National Renewable Energy Laboratory,2014.
[21]赖踊卿.软黏土地基海上风机大直径单桩水平受荷特性与分析模型[D].杭州:浙江大学,2021.LAI Y Q.Modelling of Lateral Behaviour of Large-Diameter Monopiles Supporting Offshore Wind Turbines in Soft Clay[D].Hangzhou:Zhejiang University,2021.
[22]ORCINA.Orca Flex Manual,Version 11.3d[K].2023.
[23]LOZON E,HALL M.Coupled Loads Analysis of a Novel Shared-Mooring Floating Wind Farm[J].Applied Energy,2023,332:120513.
[24]LIANG G D,JIANG Z Y,MERZ K.Mooring Analysis of a Dual-Spar Floating Wind Farm with a Shared Line[J].Journal of Offshore Mechanics and Arctic Engineering,2021,143(6):062003.
[25]ZHANG Y M,LIU H X.Coupled Dynamic Analysis on Floating Wind Farms with Shared Mooring under Complex Conditions[J].Ocean Engineering,2023,267:113323.
[26]NREL.Open FAST Documentation,Version 3.4.1[K].2023.
[27]MUNIR H,LEE C F,ONG M C.Global Analysis of Floating Offshore Wind Turbines with Shared Mooring System[C]//3rd Conference of Computational Methods&Ocean Technology and 2nd Conference of Oil&Gas Technologies in Cold Climate.2021.
[28]PILLAI A C,GORDELIER T J,THIES P R,et al.Anchor Loads for Shallow Water Mooring of a 15 MW Floating Wind Turbine-Part I:Chain Catenary Moorings for Single and Shared Anchor Scenarios[J].Ocean Engineering,2022,266:111816.
[29]DING Q W,LI C,YU N T,et al.Numerical and Experimental Investigation into the Dynamic Response of a Floating Wind Turbine Spar Array Platform[J].Journal of Mechanical Science and Technology,2018,32(3):1106-1116.
[30]岳新智,刘青松,缪维跑,等.半潜式平台漂浮式风力机阵列平台普通海况动态响应研究[J].热能动力工程,2022,37(9):152-160.YUE X Z,LIU Q S,MIAO W P,et al.Research on Dynamic Response of Semi-Submersible Floating Wind Turbine Array Platform in Normal Sea State[J].Journal of Engineering for Thermal Energy and Power,2022,37(9):152-160.(in Chinese)
[31]HALL M,CONNOLLY P.Coupled Dynamics Modelling of a Floating Wind Farm with Shared Mooring Lines[C]//37th International Conference on Ocean,Offshore and Arctic Engineering.2018.
[32]何鸿圣,李蜀军,岳敏楠,等.风浪异向下漂浮式风电场平台动态响应研究[J].热能动力工程,2022,37(8):166-174.HE H S,LI S J,YUE M N,et al.Research on Dynamic Response of Floating Wind Farm Platform under Wind-Wave Misalignment[J].Journal of Engineering for Thermal Energy and Power,2022,37(8):166-174.(in Chinese)
[33]曹娜,于群,王伟胜,等.风电场尾流效应模型研究[J].太阳能学报,2016,37(1):222-229.CAO N,YU Q,WANG W S,et al.Research on Wake Effect Model of Wind Farm[J].Acta Energiae Solaris Sinica,2016,37(1):222-229.(in Chinese)
[34]BALAKRISHNAN K,ARWADE S R,FONTANA C,et al.Comparison of Multiline Anchors for Offshore Wind Turbines with Spar and with Semisubmersible[C]//NAWEA/Windtech.2019.
[35]HERDUIN M.Multi-Directional Loading on Shared Anchors for Offshore Renewable Energy:Definition and Preliminary Investigation into Soil Behaviour and Anchor Performance[D].Perth:The University of Western Australia,2019.
[36]HERDUIN M,GAUDIN C,CASSIDY M,et al.Multi-Directional Load Cases on Shared Anchors for Arrays of Floating Structures[C]//Asian Wave and Tidal Energy Conference.2016.
[37]XU H,RUI S J,SHEN K M,GUO Z.Investigations on the Mooring Safety Considering the Coupling Effect of the Mooring Line Snap Tension and Anchor Out-of-Plane Loading[J].Applied Ocean Research,2023,141:103753.
[38]FU D F,ZHOU Z F,YAN Y,et al.A Method to Predict the Torsional Resistance of Suction Caisson with Anti-Rotation Fins in Clay[J].Marine Structures,2020,75:102866.
[39]SAVIANO A,PISARIO F.Effects of Misalignment on the Undrained HV Capacity of Suction Anchors in Clay[J].Ocean Engineering,2017,133:89-106.
[40]沈侃敏.海洋锚泊基础安装与服役性能研究[D].杭州:浙江大学,2017.SHEN K M.Performance of Offshore Mooring Systems during Installation and in Service[D].Hangzhou:Zhejiang University,2017.
[41]何奔.软粘土地基单桩和复合桩基水平受荷性状[D].杭州:浙江大学,2016.HE B.Lateral Behaviour of Single Pile and Composite Pile in Soft Clay[D].Hangzhou:Zhejiang University,2016.
[42]LI L L,DAN H B,WANG L Z.Undrained Behavior of Natural Marine Clay under Cyclic Loading[J].Ocean Engineering,2011,38(16):1792-1805.
[43]周文杰.海上风机导管架基础循环受荷性状与分析方法[D].杭州:浙江大学,2022.ZHOU W J.Behavior of Offshore Wind Turbine Jacket Foundation under Cyclic Loadings and Calculation Methods[D].Hangzhou:Zhejiang University,2022.
[44]CLUKEY E C,MORRISON M J,GARINER J.The Response of Suction Caissons in Normally Consolidated Clays to Cyclic TLP Loading Conditions[C]//27th Annual Offshore Technology Conference.1995.
[45]ISKANDER M,EL-GHARBAWY S,OLSON R.Performance of Suction Caissons in Sand and Clay[J].Canadian Geotechnical Journal,2002,39(3):576-584.
[46]RANDOLPH M F,HOUSE A R.Analysis of Suction Caisson Capacity in Clay[C]//34th Offshore Technology Conference.2002.
[47]ANDERSEN K H,DYVIK R,SCHRDER K,et al.Field Tests of Anchors in Clay II:Predictions and Interpretation[J].Journal of Geotechnical Engineering,1993,119(10):1532-1549.
[48]SINGH S P,RAMASWAMY S V.Response of Plate Anchors to Sustained-Cyclic Loading[J].Indian Geotechnical Journal,2002,32(2):161-172.
[49]芮圣洁.锚泊线触底开槽效应与锚泊基础承载性能[D].杭州:浙江大学,2022.RUI S J.Seabed Trench Induced by Mooring Line Dynamics and Anchor Foundation Bearing Capacity[D].Hangzhou:Zhejiang University,2022.
[50]SUN C,BRANSBY M F,NEUBECKER S R,et al.Numerical Investigations into Development of Seabed Trenching in Semitaut Moorings[J].Journal of Geotechnical and Geoenvironmental Engineering,2020,146(10).DOI:10.1061/(ASCE)GT.1943-5606.0002347.
[51]SUN L Q,ZHANG Y R,FENG X W,et al.Upper-Bound Solutions for Inclined Capacity of Suction Caissons in a Trenched Seabed[J].Géotechnique,2024,74(5):473-485.
[52]LEE J,AUBENY C P.Lateral Undrained Capacity of a Multiline Ring Anchor in Clay[J].International Journal of Geomechanics,2021,21(5):4021047.
[53]LIENG J T,STURM H,HASSEL?K K.Dynamically Installed Anchors for Floating Offshore Wind Turbines[J].Ocean Engineering,2022,266:112789.
Basic Information:
DOI:10.13788/j.cnki.cbgc.2024.04.19
China Classification Code:TM614
Citation Information:
[1]徐航,沈侃敏,芮圣洁.漂浮式海上风电场共享系泊系统研究综述[J].船舶工程,2024,46(04):142-152.DOI:10.13788/j.cnki.cbgc.2024.04.19.
Fund Information:
国家自然科学基金项目(52101334); 浙江省海洋岩土工程与材料重点实验室开放基金项目(OGME21003)