nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 04 v.47 160-169
Optimization Method of Offshore Wind Power Operation and Maintenance Planning Considering Economy and Comfort
Email:
DOI: 10.13788/j.cnki.cbgc.2025.04.19
English author unit:

Northwest Electric Power Design Institute Co.,Ltd.,China Power Engineering Consulting Group Co.,Ltd.;China Power Engineering Consulting Group Co.,Ltd.;Ocean Energy Engineering Technology Research Institute,China Power Engineering Consulting Group Co.,Ltd.;

Abstract:

[Purpose] In order to reduce the operation and maintenance costs and downtime losses of offshore wind power, and improve the economic benefits, [Method] A comprehensive optimization algorithm for offshore wind power operation and maintenance planning that considers both economy and comfort is proposed. By establishing an optimization model and a fast forecasting method, combined with a genetic algorithm for solving, the optimal operation and maintenance plan is determined. [Results] A case study is conducted on a floating wind farm with 80 floating wind turbines(5 MW) and an installed capacity of 400 MW. The results show that the total operation and maintenance cost of the wind turbines can be reduced by about 47.7%. [Conclusion] The research results can provide some references for cost reduction and efficiency improvement in operation and maintenance of offshore wind power.

KeyWords: offshore wind power;maintenance optimization;human body comfort;working time window;genetic algorithm
References

[1]李铮,郭小江,申旭辉,等.我国海上风电发展关键技术综述[J].发电技术, 2022, 43(2):186-197.LI Z, GUO X J, SHEN X H, et al. Summary of Technologies for the Development of Offshore Wind Power Industry in China[J]. Power Generation Technology, 2022, 43(2):186-197.

[2] LE C H, REN J Y, WANG K, et al. Towing Performance of the Submerged Floating Offshore Wind Turbine Under Different Wave Conditions[J]. Journal of Marine Science and Engineering, 2021, 9(6):633-652.

[3]齐喜玲,乐丛欢,任建宇,等.多浮筒全潜式海上风机整机拖航运动特性试验对比[J].南方能源建设,2024, 11(2):17-30.QI X L, LE C H, REN J Y, et al. Comparision of Integrated Towing Motion Performance for Multi-Column Semisubmersible Floating Offshore Wind Turbines[J]. Southern Energy Construction, 2024,11(2):17-30.

[4]乐丛欢,李阔,张浦阳,等.新型半潜式浮式风机在不同流速下的动力响应特性研究[J].船舶力学, 2023,27(2):185-194.LE C H, LI K, ZHANG P Y, et al. Dynamic Response Characteristics of a New Semi-Submersible Floating Wind Turbine in Different Current Velocity Conditions[J]. Journal of Ship Mechanics, 2023, 27(2):185-194.

[5]卿子龙,卿良华.海上风电机组智慧型监控管理系统[J].分布式能源, 2022, 7(1):69-73.QING Z L, QING L H. Intelligent Monitoring and Management System for Offshore Wind Turbines[J].Distributed Energy, 2022, 7(1):69-73.

[6]房方,梁栋炀,刘亚娟,等.海上风电智能控制与运维关键技术[J].发电技术, 2022, 43(2):175-185.FANG F, LIANG D Y, LIU Y J, et al. Key Technologies for Intelligent Control and Operation and Maintenance of Offshore Wind Power[J]. Power Generation Technology, 2022, 43(2):175-185.

[7]刘吉臻,马利飞,王庆华,等.海上风电支撑我国能源转型发展的思考[J].中国工程科学, 2021, 23(1):149-159.LIU J Z, MA L F, WANG Q H, et al. Offshore Wind Power Supports China's Energy Transition[J]. Strategic Study of CAE, 2021, 23(1):149-159.

[8] TUSAR M I H, SARKER B B R. State-of-the-Art Operation and Maintenance Cost Minimization Strategies for Offshore Wind Farms[C]//Institute of Industrial and Systems Engineers Annual Conference and Expo 2020. 2020.

[9]桑祺,何焱,冯笑丹,等.面向组合维修的海上风电场运行维护建模及仿真[J].电力系统自动化, 2016,40(20):83-91.SANG Q, HE Y, FENG X D, et al. Modeling and Simulation of Combined Repair Oriented Operation and Maintenance for Offshore Wind Farm[J]. Automation of Electric Power Systems, 2016, 40(20):83-91.

[10] BYON E, NTAIMO L, DING Y. Optimal Maintenance Strategies for Wind Turbine Systems Under Stochastic Weather Conditions[J]. IEEE Transactions on Reliability, 2010, 59(2):393-404.

[11] HALVORSEN-WEARE E E, GUNDEGJERDE C,HALVORSEN I B, et al. Vessel Fleet Analysis for Maintenance Operations at Offshore Wind Farms[J].Energy Procedia, 2013, 35:167-176.

[12]王世全,刘城,张方红,等.多任务调度排程在海上风电运维中的研究与应用[J].船舶工程, 2020, 42(增刊2):159-165.WANG S Q, LIU C, ZHANG F H, et al. Research and Application of Multi-Task Scheduling in Offshore Wind Power Operation and Maintenance[J]. Ship Engineering,2020, 42(Suppl. 2):159-165.

[13] LAZAKIS I, KHAN S. An Optimization Framework for Daily Route Planning and Scheduling of Maintenance Vessel Activities in Offshore Wind Farms[J]. Ocean Engineering, 2021, 225:108752.

[14] ZHOU P, YIN P T. An Opportunistic Condition-Based Maintenance Strategy for Offshore Wind Farm Based on Predictive Analytics[J]. Renewable and Sustainable Energy Reviews, 2019, 109:1-9.

[15] XIE L B, RUI X M, LI S, et al. An Opportunistic Maintenance Strategy for Offshore Wind Turbine Based on Accessibility Evaluation[J]. Wind Engineering, 2020,44(5):455-468.

[16] FLORIAN M, S?RENSEN J D. Risk-Based Planning of Operation and Maintenance for Offshore Wind Farms[J]. Energy Procedia, 2017, 137:261-272.

[17] SEYR H, MUSKULUS M. Decision Support Models for Operations and Maintenance for Offshore Wind Farms a Review[J]. Applied Sciences, 2019, 9(2):278-293.

[18] HAGEN B, SIMONSEN I, HOFMANN M, et al. A Multivariate Markov Weather Model for O&M Simulation of Offshore Wind Parks[J]. Energy Procedia,2013, 35:137-147.

[19] LI X D, OUELHADJ D, SONG X, et al. A Decision Support System for Strategic Maintenance Planning in Offshore Wind Farms[J]. Renewable Energy, 2016, 99:784-799.

[20] LI H, PENG W, HUANG C G, et al. Failure Rate Assessment for Onshore and Floating Offshore Wind Turbines[J]. Journal of Marine Science and Engineering,2022, 10(12):1965.

[21] SCHEU M, MATHA D, SCHWARZKOPF M A, et al.Human Exposure to Motion During Maintenance on Floating Offshore Wind Turbines[J]. Ocean Engineering,2018, 165:293-306.

[22]李沈杰,程正顺,崔明浩,等.浮式平台运动加速度短期极值快速预报方法[J].船舶工程, 2024, 46(4):158-165.LI S J, CHENG Z S, CUI M H, CHEN P. Efficient Prediction Method of Short-Term Extreme Acceleration of Floating Platform[J]. Ship Engineering, 2024, 46(4):158-165.

[23]邓奇蓉.海上风电机组运维优化模型改进及求解算法研究[D].北京:华北电力大学, 2022.DENG Q R. The Research on Improvement of Maintenance Optimization Model for offshore Wind Turbine and One Heuristic Solution Algorithm[D].Beijing:North China Electric Power University, 2022.

[24] GIOVANNI R, PILLAI AJIT C, THIES PHILIPP R, et al. Multi-Objective Optimization of the Operation and Maintenance Assets of an Offshore Wind Farm Using Genetic Algorithms[J]. Wind Engineering, 2020, 44(4):390-409.

Basic Information:

DOI:10.13788/j.cnki.cbgc.2025.04.19

China Classification Code:TM614

Citation Information:

[1]樊涛,李刚,马晨阳等.考虑经济性和舒适性的海上风电运维规划优化方法[J].船舶工程,2025,47(04):160-169.DOI:10.13788/j.cnki.cbgc.2025.04.19.

Fund Information:

中国电力工程顾问集团有限公司科技项目(DG2-T02-2023)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search