nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 04 v.47 125-132
Prediction Method for Fatigue Life of Small Cracks at the Root of Elongated Notch Structures
Email:
DOI: 10.13788/j.cnki.cbgc.2025.04.16
English author unit:

Nantong Taisheng Blue Island Offshore Co.,Ltd.;School of Aerospace Engineering and Applied Mechanics,Tongji University;

Abstract:

[Purpose] To quantify the abnormal propagation behavior of small cracks and predict the initiation life of fatigue cracks, [Method] the interaction between different mechanical parameters such as stress gradient and stress intensity factor range during the process of small crack propagation is analyzed in depth, and a new mechanism for small crack propagation is proposed based on this. [Result] The results indicate that the stress gradient generated by small crack propagation can explain the difference between the sharp notch fatigue stress concentration factor Kf and the static stress concentration factor Kt. The predicted fatigue crack initiation life of the model is in good agreement with the experimental data. The new mechanism can not only effectively quantify the abnormal propagation behavior of small cracks, but also accurately predict the initiation life of fatigue cracks. [Conclusion] The research results can provide some references for predicting the fatigue life of small cracks at the root of narrow gap structures.

KeyWords: fatigue;small cracks;propagation rate;sharp notch;crack initiation
References

[1] BHATTACHARYA B, ELLINGWOOD B. Continuum Damage Mechanics Analysis of Fatigue Crack Initiation[J]. International Journal of Fatigue, 1998,20(9):631-639.

[2] KAYNAK C, ANKARA A, BAKER T J. A Comparison of Short and Long Fatigue Crack Growth in Steel[J]. International Journal of Fatigue, 1996, 18(1):17-23.

[3] PEARSON S. Initiation of Fatigue Cracks in Commercial Aluminium Alloys and the Subsequent Propagation of Very Short Cracks[J]. Engineering Fracture Mechanics, 1975, 7(2):235-247.

[4] ZHANG J Z, ZHANG J Z, DU S Y. Elastic-Plastic Finite Element Analysis and Experimental Study of Short and Long Fatigue Crack Growth[J]. Engineering Fracture Mechanics, 2001, 68(14):1591-1605.

[5] SU M L, LIU W C, HAN Y D, et al. A State-of-Art Review of Fatigue Short Crack Propagation Behavior of Metals:Model, Experimental and Prospective[J].Journal of Materials Research and Technology, 2025, 35:2693-2712.

[6] KRUZIC J J, CAMPBELL J P, RITCHIE R O. On the Fatigue Behavior ofΓ-Based Titanium Aluminides:Role of Small Cracks[J]. Acta Materialia, 1999, 47(3):801-816.

[7]杨秦政,杨晓光,黄渭清,等.粉末高温合金FGH4096的疲劳小裂纹扩展行为[J].金属学报, 2022,58(5):683-694.YANG Q Z, YANG X G, HUANG W Q, et al.Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. Acta Metallurgica Sinica, 2022, 58(5):683-694.

[8] LEOST N, MISSOUM-BENZIANE D, RAMBAUDON M, et al. Short Fatigue Crack Growth Sensitivity to Thermo-Mechanical Fatigue Loading[J]. International Journal of Fatigue, 2025, 191:108651.

[9]王栓程,杨冰,廖贞,等.金属材料疲劳短裂纹萌生与扩展研究综述[J].机械工程学报, 2023, 59(16):32-53.WANG S C, YANG B, LIAO Z, et al. A Review on the Initiation and Propagation of Fatigue Short Cracks in Metallic Materials[J]. Journal of Mechanical Engineering, 2023, 59(16):32-53.

[10] ZHU S J, PENG L M, MORIYA T, et al. Effect of Stress Ratio on Fatigue Crack Growth in Ti-Al Intermetallics at Room and Elevated Temperatures[J].Materials Science and Engineering:A, 2000, 290(2):198-206.

[11] RAVICHANDRAN K S. Three-Dimensional CrackShape Effects during the Growth of Small Surface Fatigue Cracks in a Titanium-Base Alloy[J]. Fatigue&Fracture of Engineering Materials&Structures, 1997,20(10):1423-1442.

[12] ZABETT A, PLUMTREE A. Microstructural Effects on the Small Fatigue Crack Behaviour of an Aluminum Alloy Plate[J]. Fatigue&Fracture of Engineering Materials&Structures, 1995, 18(8):801-809.

[13] LANKFORD J. The Influence of Microstructure on the Growth of Small Fatigue Cracks[J]. Fatigue&Fracture of Engineering Materials&Structures, 1985, 8(2):161-175.

[14] MCEVILY A J, EIFLER D, MACHERAUCH E. An Analysis of the Growth of Short Fatigue Cracks[J].Engineering Fracture Mechanics, 1991, 40(3):571-584.

[15] MCEVILY A J, ISHIHARA S, ENDO M, et al.One-Parameter and Two-Parameter Analyses of Short Fatigue Crack Growth[J]. International Journal of Fatigue, 2007, 29(12):2237-2245.

[16] VASUDEVAN A K, SADANANDA K. Application of Unified Fatigue Damage Approach to Compression-Tension Region[J]. International Journal of Fatigue, 1999, 21:263-273.

[17] SADANANDA K, VASUDEVAN A K. Fatigue Crack Growth Mechanisms in Steels[J]. International Journal of Fatigue, 2003, 25(9):899-914.

[18] WU X R, CARLSSON J. Weight Functions and Stress Intensity Factor Solutions[M]. Oxford:Pergamon Press,1991.

[19] SIH G C. Mechanics of Fracture Initiation and Propagation[M]. Dordrecht:Springer Netherlands,1991.

[20] SIH G C, TANG K K. Assurance of Reliable Time Limits in Fatigue Depending on Choice of Failure Simulation:Energy Density Versus Stress Intensity[J].Theoretical and Applied Fracture Mechanics, 2011,55(1):39-51.

[21] SIH G C, TANG X S. Micro/Macro-Crack Growth Due to Creep-Fatigue Dependency on Time-Temperature Material Behavior[J]. Theoretical and Applied Fracture Mechanics, 2008, 50(1):9-22.

[22] DE CASTRO J T P, MEGGIOLARO M A, MIRANDA A C, et al. Prediction of Fatigue Crack Initiation Lives at Elongated Notch Roots Using Short Crack Concepts[J]. International Journal of Fatigue, 2012, 42:172-182.

[23] FROST N E, DUGDALE D S. Fatigue Tests on Notched Mild Steel Plates with Measurements of Fatigue Cracks[J]. Journal of the Mechanics and Physics of Solids, 1957, 5(3):182-192.

[24] SCHIJVE J. Fatigue of Structures and Materials[M].Dordrecht:Springer Netherlands, 2009.

[25] INGLIS C E. Stresses in a Plate Due to the Presence of Cracks and Sharp Corners[M]. Bellingham:SPIE Press,1997.

[26] EL HADDAD M H, TOPPER T H, SMITH K N.Prediction of Non Propagating Cracks[J]. Engineering Fracture Mechanics, 1979, 11(3):573-584.

[27] BA?ANT Z P. Scaling of Quasibrittle Fracture:Asymptotic Analysis[J]. International Journal of Fracture, 1997, 83(1):19-40.

[28] MEGGIOLARO M A, MIRANDA A C, DE-CASTRO J T P. Short Crack Threshold Estimates to Predict Notch Sensitivity Factors in Fatigue[J]. International Journal of Fatigue, 2007, 29(9):2022-2031.

[29] CHANG T, GUO W. A Model for the Through-Thickness Fatigue Crack Closure[J].Engineering Fracture Mechanics, 1999, 64(1):59-65.

[30] ASTM International. Standard Test Method for Measurement of Fatigue Crack Growth Rates:ASTM E647-00[S]. 2017.

[31] WU H, IMAD A, BENSEDDIQ N, et al. Prediction of the Residual Fatigue Life of Cracked Structures Repaired by the Stop-Hole Method[J]. International Journal of Fatigue, 2010, 32(4):670-677.

[32] BORREGO L P, FERREIRA J M, COSTA J M. Fatigue Crack Growth and Crack Closure in an AlMgSi Alloy[J].Fatigue&Fracture of Engineering Materials&Structures, 2001, 24(4):255-265.

Basic Information:

DOI:10.13788/j.cnki.cbgc.2025.04.16

China Classification Code:P75

Citation Information:

[1]朱军,吴帅宇,王琛等.狭长缺口结构根部疲劳小裂纹寿命预测方法[J].船舶工程,2025,47(04):125-132.DOI:10.13788/j.cnki.cbgc.2025.04.16.

Fund Information:

国家自然科学基金(12372081,11972255)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search